如何并行调用可运行对象
本指南假设您对以下概念有一定了解:
RunnableParallel
原语本质上是一个字典,其值是可运行对象(或可以被强制转换为可运行对象的事物,例如函数)。它并行运行所有值,并且每个值都使用 RunnableParallel
的总体输入进行调用。最终返回值是一个字典,包含每个值在其相应键下的结果。
使用 RunnableParallels
格式化
RunnableParallels
对于并行化操作非常有用,但也可以用于操纵一个 Runnable 的输出,以匹配下一个 Runnable 在序列中的输入格式。您可以使用它们来拆分或分叉链,以便多个组件可以并行处理输入。随后,其他组件可以加入或合并结果,以合成最终响应。这种类型的链创建了一个计算图,如下所示:
Input
/ \
/ \
Branch1 Branch2
\ /
\ /
Combine
下面,提示的输入预期为一个包含键 "context"
和 "question"
的映射。用户输入仅为问题。因此,我们需要使用检索器获取上下文,并将用户输入传递到 "question"
键下。
from langchain_community.vectorstores import FAISS
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
vectorstore = FAISS.from_texts(
["harrison worked at kensho"], embedding=OpenAIEmbeddings()
)
retriever = vectorstore.as_retriever()
template = """Answer the question based only on the following context:
{context}
Question: {question}
"""
# The prompt expects input with keys for "context" and "question"
prompt = ChatPromptTemplate.from_template(template)
model = ChatOpenAI()
retrieval_chain = (
{"context": retriever, "question": RunnablePassthrough()}
| prompt
| model
| StrOutputParser()
)
retrieval_chain.invoke("where did harrison work?")
'Harrison worked at Kensho.'
::: {.callout-tip} 请注意,当与另一个 Runnable 组合时,我们甚至不需要将字典包装在 RunnableParallel 类中 — 类型转换由我们处理。在链的上下文中,这些是等效的: :::
{"context": retriever, "question": RunnablePassthrough()}
RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
RunnableParallel(context=retriever, question=RunnablePassthrough())
有关更多信息,请参见 强制转换部分。
使用 itemgetter 作为简写
请注意,您可以将 Python 的 itemgetter
作为简写来从映射中提取数据,以便与 RunnableParallel
结合使用。有关 itemgetter 的更多信息,请参见 Python 文档。
在下面的示例中,我们使用 itemgetter 从映射中提取特定键:
from operator import itemgetter
from langchain_community.vectorstores import FAISS
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
vectorstore = FAISS.from_texts(
["harrison worked at kensho"], embedding=OpenAIEmbeddings()
)
retriever = vectorstore.as_retriever()
template = """Answer the question based only on the following context:
{context}
Question: {question}
Answer in the following language: {language}
"""
prompt = ChatPromptTemplate.from_template(template)
chain = (
{
"context": itemgetter("question") | retriever,
"question": itemgetter("question"),
"language": itemgetter("language"),
}
| prompt
| model
| StrOutputParser()
)
chain.invoke({"question": "where did harrison work", "language": "italian"})
'Harrison ha lavorato a Kensho.'
并行化步骤
RunnableParallels 使得并行执行多个 Runnables 变得简单,并能将这些 Runnables 的输出作为一个映射返回。
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnableParallel
from langchain_openai import ChatOpenAI
model = ChatOpenAI()
joke_chain = ChatPromptTemplate.from_template("tell me a joke about {topic}") | model
poem_chain = (
ChatPromptTemplate.from_template("write a 2-line poem about {topic}") | model
)
map_chain = RunnableParallel(joke=joke_chain, poem=poem_chain)
map_chain.invoke({"topic": "bear"})
{'joke': AIMessage(content="Why don't bears like fast food? Because they can't catch it!", response_metadata={'token_usage': {'completion_tokens': 15, 'prompt_tokens': 13, 'total_tokens': 28}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_d9767fc5b9', 'finish_reason': 'stop', 'logprobs': None}, id='run-fe024170-c251-4b7a-bfd4-64a3737c67f2-0'),
'poem': AIMessage(content='In the quiet of the forest, the bear roams free\nMajestic and wild, a sight to see.', response_metadata={'token_usage': {'completion_tokens': 24, 'prompt_tokens': 15, 'total_tokens': 39}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_c2295e73ad', 'finish_reason': 'stop', 'logprobs': None}, id='run-2707913e-a743-4101-b6ec-840df4568a76-0')}
并行性
RunnableParallel 也适用于并行运行独立的进程,因为映射中的每个 Runnable 都是并行执行的。例如,我们可以看到之前的 joke_chain
、poem_chain
和 map_chain
的运行时间大致相同,尽管 map_chain
同时执行了其他两个。
%%timeit
joke_chain.invoke({"topic": "bear"})
610 ms ± 64 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%%timeit
poem_chain.invoke({"topic": "bear"})
599 ms ± 73.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%%timeit
map_chain.invoke({"topic": "bear"})
643 ms ± 77.8 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
下一步
您现在知道了一些使用 RunnableParallel
格式化和并行化链步骤的方法。
要了解更多信息,请查看本节中关于可运行任务的其他操作指南。