ChatTogether
此页面将帮助您开始使用 Together AI 聊天模型。有关所有 ChatTogether 功能和配置的详细文档,请访问 API 参考。
Together AI 提供一个 API 来查询 50+ 个领先的开源模型
概述
集成详情
类别 | 包 | 本地 | 可序列化 | JS 支持 | 包下载量 | 包最新版本 |
---|---|---|---|---|---|---|
ChatTogether | langchain-together | ❌ | beta | ✅ |
模型特性
工具调用 | 结构化输出 | JSON 模式 | 图像输入 | 音频输入 | 视频输入 | 令牌级流式传输 | 原生异步 | 令牌使用 | Logprobs |
---|---|---|---|---|---|---|---|---|---|
✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
设置
要访问 Together 模型,您需要创建一个 Together 账户,获取 API 密钥,并安装 langchain-together
集成包。
凭证
前往 此页面 注册 Together 并生成 API 密钥。完成后设置 TOGETHER_API_KEY 环境变量:
import getpass
import os
os.environ["TOGETHER_API_KEY"] = getpass.getpass("Enter your Together API key: ")
如果您想要自动跟踪模型调用,您还可以通过取消下面的注释来设置您的 LangSmith API 密钥:
# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
# os.environ["LANGSMITH_TRACING"] = "true"
安装
LangChain Together 集成位于 langchain-together
包中:
%pip install -qU langchain-together
[1m[[0m[34;49mnotice[0m[1;39;49m][0m[39;49m A new release of pip is available: [0m[31;49m24.0[0m[39;49m -> [0m[32;49m24.1.2[0m
[1m[[0m[34;49mnotice[0m[1;39;49m][0m[39;49m To update, run: [0m[32;49mpip install --upgrade pip[0m
Note: you may need to restart the kernel to use updated packages.
实例化
现在我们可以实例化我们的模型对象并生成聊天完成:
- TODO: 使用相关参数更新模型实例化。
from langchain_together import ChatTogether
llm = ChatTogether(
model="meta-llama/Llama-3-70b-chat-hf",
temperature=0,
max_tokens=None,
timeout=None,
max_retries=2,
# other params...
)
调用
messages = [
(
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
),
("human", "I love programming."),
]
ai_msg = llm.invoke(messages)
ai_msg
AIMessage(content="J'adore la programmation.", response_metadata={'token_usage': {'completion_tokens': 9, 'prompt_tokens': 35, 'total_tokens': 44}, 'model_name': 'meta-llama/Llama-3-70b-chat-hf', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-79efa49b-dbaf-4ef8-9dce-958533823ef6-0', usage_metadata={'input_tokens': 35, 'output_tokens': 9, 'total_tokens': 44})
print(ai_msg.content)
J'adore la programmation.
链接
我们可以使用提示模板来链接我们的模型,如下所示:
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
),
("human", "{input}"),
]
)
chain = prompt | llm
chain.invoke(
{
"input_language": "English",
"output_language": "German",
"input": "I love programming.",
}
)
AIMessage(content='Ich liebe das Programmieren.', response_metadata={'token_usage': {'completion_tokens': 7, 'prompt_tokens': 30, 'total_tokens': 37}, 'model_name': 'meta-llama/Llama-3-70b-chat-hf', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-80bba5fa-1723-4242-8d5a-c09b76b8350b-0', usage_metadata={'input_tokens': 30, 'output_tokens': 7, 'total_tokens': 37})
API 参考
有关所有 ChatTogether 功能和配置的详细文档,请访问 API 参考: https://api.python.langchain.com/en/latest/chat_models/langchain_together.chat_models.ChatTogether.html