Skip to main content

Databricks Unity Catalog (UC)

本笔记本展示如何将 UC 函数用作 LangChain 工具。

请参阅 Databricks 文档(AWS|Azure|GCP)了解如何在 UC 中创建 SQL 或 Python 函数。请勿跳过函数和参数注释,这对于 LLM 正确调用函数至关重要。

在这个示例笔记本中,我们创建一个简单的 Python 函数来执行任意代码,并将其用作 LangChain 工具:

CREATE FUNCTION main.tools.python_exec (
code STRING COMMENT 'Python code to execute. Remember to print the final result to stdout.'
)
RETURNS STRING
LANGUAGE PYTHON
COMMENT 'Executes Python code and returns its stdout.'
AS $$
import sys
from io import StringIO
stdout = StringIO()
sys.stdout = stdout
exec(code)
return stdout.getvalue()
$$

它在 Databricks SQL 仓库中的安全隔离环境中运行。

%pip install --upgrade --quiet databricks-sdk langchain-community mlflow
from langchain_community.chat_models.databricks import ChatDatabricks

llm = ChatDatabricks(endpoint="databricks-meta-llama-3-70b-instruct")
from langchain_community.tools.databricks import UCFunctionToolkit

tools = (
UCFunctionToolkit(
# You can find the SQL warehouse ID in its UI after creation.
warehouse_id="xxxx123456789"
)
.include(
# Include functions as tools using their qualified names.
# You can use "{catalog_name}.{schema_name}.*" to get all functions in a schema.
"main.tools.python_exec",
)
.get_tools()
)
from langchain.agents import AgentExecutor, create_tool_calling_agent
from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are a helpful assistant. Make sure to use tool for information.",
),
("placeholder", "{chat_history}"),
("human", "{input}"),
("placeholder", "{agent_scratchpad}"),
]
)

agent = create_tool_calling_agent(llm, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
agent_executor.invoke({"input": "36939 * 8922.4"})


> Entering new AgentExecutor chain...

Invoking: `main__tools__python_exec` with `{'code': 'print(36939 * 8922.4)'}`


{"format": "SCALAR", "value": "329584533.59999996\n", "truncated": false}乘法 36939 * 8922.4 的结果是 329,584,533.60。

> Finished chain.
{'input': '36939 * 8922.4',
'output': '乘法 36939 * 8922.4 的结果是 329,584,533.60.'}

相关


此页面是否有帮助?


您还可以留下详细的反馈 在 GitHub 上